Forward-Looking Statements

Some of the information presented in this presentation and discussions that follow, including, without limitation, statements with respect to product development, market trends, price, expected growth and earnings, demand for our products, capital projects, tax rates, stock repurchases, dividends, cash flow generation, economic trends, outlook and all other information relating to matters that are not historical facts may constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Actual results could differ materially from the views expressed.

Factors that could cause actual results to differ materially from the outlook expressed or implied in any forward-looking statement include, without limitation: changes in economic and business conditions; changes in financial and operating performance of our major customers and industries and markets served by us; the timing of orders received from customers; the gain or loss of significant customers; competition from other manufacturers; changes in the demand for our products or the end-user markets in which our products are sold; limitations or prohibitions on the manufacture and sale of our products; availability of raw materials; increases in the cost of raw materials and energy, and our ability to pass through such increases to our customers; changes in our markets in general; fluctuations in foreign currencies; changes in laws and government regulation impacting our operations or our products; the occurrence of regulatory proceedings, claims or litigation; the occurrence of cyber-security breaches, terrorist attacks, industrial accidents, natural disasters or climate change; hazards associated with chemicals manufacturing; the inability to maintain current levels of product or premises liability insurance or the denial of such coverage; political unrest affecting the global economy, including adverse effects from terrorism or hostilities; political instability affecting our manufacturing operations or joint ventures; changes in accounting standards; the inability to achieve results from our global manufacturing cost reduction initiatives as well as our ongoing continuous improvement and rationalization programs; changes in the jurisdictional mix of our earnings and changes in tax laws and rates; changes in monetary policies, inflation or interest rates that may impact our ability to raise capital or increase our cost of funds, impact the performance of our pension fund investments and increase our pension expense and funding obligations; volatility and uncertainties in the debt and equity markets; technology or intellectual property infringement, including cyber-security breaches, and other innovation risks; decisions we may make in the future; the ability to successfully execute, operate and integrate acquisitions and divestitures; uncertainties as to the duration and impact of the coronavirus (COVID-19) pandemic; and the other factors detailed from time to time in the reports we file with the SEC, including those described under “Risk Factors” in our Annual Report on Form 10-K and our Quarterly Reports on Form 10-Q. These forward-looking statements speak only as of the date of this presentation. We assume no obligation to provide any revisions to any forward-looking statements should circumstances change, except as otherwise required by securities and other applicable laws.
Lithium Powers the Potential of a Sustainable Future

- Broad range of products with leading positions in lithium hydroxide, lithium carbonate, metal, and organometallics.
- Vertically integrated with access to brine and spodumene that are among the largest and most concentrated globally.
- Focused on driving low-cost operations, sustainable production, and disciplined capital expansion that will provide strong returns.
- Lithium industry demand to reach 1 million MT LCE by 2025, 20%+ CAGR driven by EV penetration in new vehicle sales.

1 Resource & Reserve Data According to Roskill: Lithium Outlook to 2028. 2 Lithium Intensity of Energy Storage Demand: 0.95, 0.76, and 0.78 kg LCE/kWh in 2018, 2019, and 2025, respectively; calculated from demand model output of total lithium demand (total real consumption and YOY inventory change), which accounts for lithium consumption of different technologies and applications. New Car Sales: 95, 89, and 102 million in 2018, 2019, and 2025, respectively.
Putting Sustainability to Work in Lithium

Sustainable Business Model
- R&D on innovative battery material and to recycle lithium from batteries
- Enhanced operating codes including Code of Conduct for Business Partners
- Long-term focus on growth

Community Engagement
- Voluntary Cooperation and Sustainability Agreement with Atacameño People’s Council; joint monthly meetings in Chile
- 3.5% of annual Chilean sales shared with indigenous community

Natural Resource Management
- New thermal evaporator in La Negra to recycle water
- Albemarle has only 0.5% of the total fresh water rights in the Salar de Atacama
- Use of solar energy for concentration of brine allowing a low GHG footprint

Our People & Workplace
- Hired a dedicated corporate VP of Inclusion and Diversity
- Strong focus on health and safety with KPIs
- Training and Development: Formal Mentoring Program, Sales Excellence, Lean Manufacturing
Sustainable Business that Protects Our World-Class Natural Resources

- Geographically Diverse
- High Quality
- Large Scale
- Low Cost

* Magnolia, AR is unconventional brine lithium, e.g., bromine, geothermal, or oilfield.
Integrated Global Footprint for Lithium Chemical Conversion

Production of 100+ Products Makes Albemarle one of the Most Capable & Diverse Lithium Companies

- Kings Mountain, NC, U.S.
- Silver Peak, NV, U.S.
- New Johnsonville, TN, U.S.
- Salar de Atacama, Chile
- La Negra, Chile
- Jiangxi, China & Sichuan, China
- Kemerton, Australia
- Greenbushes, Australia
- Langelsheim, Germany
- Taichung, Taiwan
- Wodgina, Australia
Simplified Grouping of 100+ Products Offered by Albemarle
The Lithium Tree

See Glossary for product definition
Lithium Powers the Potential of Customers Across Multiple Markets

~650 Customers within Multiple End Markets in ~60 Countries

Energy Storage
CAGR through 2025 of ~30%
- Battery Grade Hydroxide
- Battery Grade Carbonate
- Battery Grade Metal

Industrial
GDP Growth
- Technical Grade Hydroxide
- Technical Grade Carbonate
- Technical Grade Spodumene
- Specialty Lithium Salts

Specialties Grade
GDP+ Growth
- Butyllithium
- Cesium Products
- Energetics Products
- Organometallics
- Lithium Carbonate Pharma Grade

Reported by Albemarle management team as of 2019 Investor Day
Lithium as a Part of Our Daily Lives

- Portable Charger
 - Battery
- Tablet/Computer
 - Batteries
- Phone
 - Battery & Screen
- Glass
 - Ceramic Stovetop
- Cookware
 - Shock-resistant glazes
- Windows
 - Glass
- Lithium
 - Medication
- Wind Turbine
 - Lubricating Grease
- Airplane
 - Aluminum Alloy
- Power Tools
 - Battery
- Electric Car
 - Battery
- Stationary Home
 - Battery
- Concrete
 - Densifier
- Wind Turbine
 - Fiberglass Blades
Albemarle Brine Roadmap: Pioneers of Lithium Production in US and Chile, Sourcing from Two Global Sources

- 1975: Foote Mineral signed the basic contract with CORFO, Chilean Development Agency
- 1980: Founded Sociedad Chilena de Litio (SCL) – now Albemarle
- 1984: First production of concentrated brines at the Salar Plant
- 1984: La Negra I lithium carbonate production begins
- 2010-2016: Hydrogeological Model developed for the Salar de Atacama
- 2015: Albemarle acquired Rockwood
- 2015-2016: Historic agreement with the Atacameño People’s Council
 - Unique agreement in the natural resources industry:
 - Commission is up to 40% of sales price
 - USD $300 million in contributions for R&D projects
- 2016: Unanimous approval of the new environmental permit (RCA), to increase brine pumping from 142 to 442 liters per second
- 2017: La Negra II, new battery grade lithium carbonate plant
- 2018: Developed a Hydrogeological Model for Silver Peak
- 2021: La Negra III/IV lithium carbonate production anticipated to begin in H2

Strategic Partnership with Chile Enabling Sustainable Development
Albemarle Spodumene Roadmap: Dual Source Availability for a Stronger Future

2014
Formed Rockwood/Tianqi JV with Talison Lithium with access to the largest spodumene deposit and top ore grade

Greenbushes’ rich ore deposit allows production of concentrate with ~50% of the mining processing relative to peers and a unique carbon footprint advantage, operated by Talison

2015
Albemarle Corporation acquired Rockwood

2016
Acquired Xinyu and Chengdu conversion plant for LiOH production from spodumene

2018
Expanded Xinyu II to add 20 MT LCE capacity

2019
Finalized MARBL JV with MRL for the Wodgina mine and Kemerton LiOH conversion plants (50 kT LCE) with access to one of the largest spodumene deposits and top Li₂O grade

MARBL JV provides ALB 100% marketing and product sales responsibility for the MRL hydroxide share (60%:40%, ALB:MRL)

Late 2021
Kemerton lithium hydroxide anticipated to begin production (50 MT LCE capacity)

Access to Large Spodumene Deposits with Top Ore Grade to Support Our Customers

1Data According to Roskill: Lithium Outlook to 2028. 2 Wodgina mine facility was put in care and maintenance as of the acquisition
Managing Resources Responsibly to Support Growth in a Sustainable Manner

Albemarle Resource

<table>
<thead>
<tr>
<th>Albemarle Resource</th>
<th>2020 Operating Capacity (kTa LCE)</th>
<th>Available Resource Capability (kTa LCE)</th>
<th>% Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atacama CORFO Lease</td>
<td>40</td>
<td>100</td>
<td>40%</td>
</tr>
<tr>
<td>50% Greenbushes Interest¹</td>
<td>40</td>
<td>120</td>
<td>33%</td>
</tr>
<tr>
<td>Wodgina²</td>
<td>0</td>
<td>100</td>
<td>0%</td>
</tr>
<tr>
<td>Silver Peak</td>
<td>5</td>
<td>10</td>
<td>50%</td>
</tr>
<tr>
<td>Kings Mountain</td>
<td>-</td>
<td>50</td>
<td>0%</td>
</tr>
<tr>
<td>Antofalla</td>
<td>-</td>
<td>TBD</td>
<td>0%</td>
</tr>
<tr>
<td>Total³</td>
<td>85</td>
<td>> 380</td>
<td>< 25%</td>
</tr>
</tbody>
</table>

¹ 50% interest with Tianqi in Talison JV. ² 60% interest and 100% marketing rights in MARBL JV with Mineral Resources. ³ Excludes Tech Grade Spodumene.
Albemarle Uses Passive Solar Energy to Concentrate Brine

- Albemarle uses brine evaporation ponds process due to:
 - Climate & Elevation
 - Brine Chemistry
 - Water Scarcity

- An arid climate and high elevation means **passive solar energy** is the most efficient way to concentrate brine

- Solar energy makes up 78% of Albemarle’s total company energy consumption, avoiding the use of fossil fuels and accompanying GHG emissions

- Brine chemistry plays a large role; salt-to-lithium ratios differ for each resource and determine precipitation capability

- **No fresh water is used to concentrate brine;** Operating in high water risk areas demands technology with an extremely low freshwater footprint

- Continuous research and testing to improve lithium extraction technology; evaluated 80+ companies and universities since 2018

Low Energy Consumption, Low GHG Footprint, Low Water Intensity
Responsible Users of Water in Water-Scarce Areas

Case Study: Salar de Atacama Fresh Water Rights

1. Natural brine extraction from the Atacama Salar
 - Concentration: 0.2% lithium
 - We use solar energy to naturally concentrate the brine, and do not use fresh water in lithium production process

2. Brine reaches a concentration of 6% lithium

3. Concentrated brine is transported in trucks to La Negra Chemical Plant in Antofagasta

4. We only use 9 L/s of our fresh water rights (~24 L/s) for production of potassium chloride and washing equipment

5. Concentrated brine is transported in trucks to La Negra Chemical Plant in Antofagasta

6. Chemical Plant La Negra
 - Complex chemical processes remove impurities and transform concentrated lithium into value-added product according to requirements of each client

7. Thermal evaporator is designed to significantly reduce water required per metric ton

Source: DGA (Chilean Water Authority)
How Brine is Different from Fresh Water

Salinity (TDS)\(^1\)

<table>
<thead>
<tr>
<th></th>
<th>FRESH WATER</th>
<th>SEA WATER</th>
<th>ATACAMA LAGOONS</th>
<th>DEAD SEA</th>
<th>ATACAMA BRINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kg/m(^3)</td>
<td>5</td>
<td>35</td>
<td>30 - 150</td>
<td>240</td>
<td>350</td>
</tr>
</tbody>
</table>

Total Dissolved Solids (TDS) Kg/m\(^3\)

Sustainability in Salar de Atacama

- Each pumping well is monitored in real time and reported to environmental authorities.
- Brine cannot be used for human consumption or agriculture.
- We have 150 monitoring wells in the Salar basin; a representative from the indigenous communities accompanies Albemarle to monitor wells.

For perspective\(^2\): the water evaporated from brine to produce a 64 kWh battery is equivalent to the water to produce:

- 250 grams or a half pound of beef
- 30 cups of coffee
- Half a pair of jeans
Hydrogeological Conceptual Model

Albemarle was granted a new environmental permit (2016) after developing a new hydrogeological model of the Salar de Atacama to support the sustainability and equilibrium of that ecosystem.

- This study was conducted for **eight years** and cost **more than US$20 million**
- With this new hydrogeological model, Albemarle established the highest standard for the sustainable extraction of brine in the Salar de Atacama.
- This model is the most up-to-date tool available and serves as the basis for authorities, communities and other companies with operations in the area.

Continually Improving Our Model to Allow for the Sustainability and Equilibrium of the Ecosystem
In the Atacama basin, there are three primary zones: salt flat or salar nucleus, where the brine is located; saline interphase, the mixing or transition zone where the brine meets the fresh water; recharge zone, where surface or groundwater collects.

- At the saline interphase, lower density groundwater meets higher density brine; the groundwater pools at the surface, forming lagoons.
- Low permeability sediments around the saline interphase minimize the effects of brine extraction in the nucleus.
- The size of the lagoons depends on the amount of groundwater that arrives at the saline interphase.
- Our hydrogeological model data demonstrates that brine pumping does not affect the upstream groundwater levels which feed the lagoons.
Reducing Fresh Water
Case Study: Installation of Thermal Evaporator, La Negra

Reducing Fresh Water

• Scheduled for mid-2021, at La Negra, Chile, Lithium Carbonate Plant

• Estimated to reduce fresh water required to produce 1 MT LCE by more than 30% by recycling wastewater stream

• Installation of new thermal evaporator designed to significantly reduce water required per metric ton

• Cost $100+ million

Doubling Production Capacity Without Doubling Water Footprint
Optimizing our Processes

Case Study: Spodumene Surface Water & By-Product Utilization

Improving Surface Water Quality

Spodumene Concentration Process at Talison¹

- Conducted 4 years of R&D to improve surface water quality on-site, which includes rainwater collection and process water recovery
- Invested approximately $28 million to construct water treatment plant that included ultrafiltration and reverse osmosis to purify surface waters to recycle back into the process water system and water dams on-site
- Operation only uses collected rainwater which is subsequently treated and reused; water treatment plant can process approximately 1 million m³ water per year

Repurpose and Recycle By-Product

Lithium Salt Process

- Lithium aluminosilicate is a by-product that is produced when converting spodumene into lithium salts
- At our China conversion sites, this material is 100% reused in the construction industry

Spodumene Concentration Process

- At our spodumene concentrate production plant at Talison¹ in Greenbushes, Australia, a special plant is under construction to reprocess a by-product stream in order to extract additional lithium

¹ 49% interest in Windfield Holdings Pty. Ltd., which directly owns 100% of the equity of Talison Lithium Pty. Ltd. (“Talison”)
Protecting Biodiversity and Ecosystems
Case Study: Peine-Punta La Brava Lagoon, Chile

Three types of flamingos inhabit the lagoons:

- James
- Andino
- Chilean

Flamingo Monitoring Plan

- As part of a voluntary commitment, we monitor flamingos in the lagoons closest to our operations.
- These migratory birds settle in the Peine-Punta La Negra lagoon system for portions of the year.
- We have spent approximately $1.1MM on these commitments since 2017.
- Through our monitoring campaigns, we have documented an increase in flamingos.\(^1\)

\[\begin{array}{c}
\text{2014-15 Baseline} \\
\text{~245} \\
\text{~365 to ~275} \\
\end{array} \quad \begin{array}{c}
\text{2019 Range} \\
\text{~320 to ~100} \\
\text{~50} \\
\end{array}\]

\(^1\) Albemarle estimate based on third party study.
Converting to Natural Gas

- In 2017, Albemarle converted the energy supply at our lithium hydroxide plants in Xinyu, China and Chengdu, China from coal to natural gas, even though coal is the common source of energy and more cost-effective in these regions of China

- The project costs to convert both plants to natural gas was ~$1.2mm USD, and also resulted in energy costs ~30% higher than compared to using coal

- Albemarle is committed to using natural gas - a more sustainable and environmentally favorable source

Reduced carbon footprint by more than 40% per year
Participating in the Circular Economy
Case Study: Talison\(^1\) Waste to Energy Project

Waste to Energy (WTE) Project

- Involves the treatment of residual wastes to harness energy from material that would otherwise be landfill
- Signed a new electricity supply agreement with East Rockingham Waste to Energy that starts in 2023
- Talison will be the facilities largest consumer
- Plant under construction in Rockingham, West Australia
- Currently, access to grid power allows for reduced energy consumption from coal with more than 10% of energy consumption from renewable sources

WTE Project will Supply 80% of Talison’s Electricity Requirements Based on Current Capacity

Source: https://erwte.com.au/technology/waste-to-energy/; \(^1\) 49% interest in Windfield Holdings Pty. Ltd., which directly owns 100% of the equity of Talison Lithium Pty. Ltd. (“Talison”)
Participating in the Circular Economy
Case Study: Using By-Products to Reduce Water Consumption

Bischofite
• By-product use reduces dust emission on dirt roads
• Replaces the use of fresh water consumption by the mining industry and government agencies to reduce dust on dirt roads in Northern Chile
• In 2019, the water saved by using bischofite exceeded the fresh water used by Albemarle in the Salar

Albemarle Water Consumption Compared to Water Saved by Use of Albemarle Lithium By-products¹

![Graph showing water consumption and savings.](image)

Researching Lithium Recycling from Batteries

Recycling will Position Lithium as a Reusable Resource in the Circular Economy

Lithium Recycling

- Lithium from recycled batteries will be an important resource in the future and will play a valuable role in meeting demand projections.
- We are partnering with strategic customers to make lithium recycling a reality.
- The value of energy metals (e.g., Li, Co, and Ni) recycling market is projected to be $7+ billion by 2030\(^1\).

\(^1\) Based on an Albemarle management internal analysis.
We Begin Our Journey with IRMA

- As one of the world’s leading lithium producers, Albemarle will also take a leadership role in transparently showing how we sustainably produce lithium.

- IRMA is the certification standard for assurance of responsible mining which has the greatest depth, breadth and specificity. IRMA offers objective, independent third-party verification of industrial-scale mine sites against a comprehensive definition of responsible mining agreed to through a collaborative, multi-stakeholder process.

- We have already begun the IRMA self-assessment process and shortly thereafter we plan to undertake the IRMA third party audit and certification of our mine site in the Salar de Atacama.
Community Relations

Joint Commitments for Sustainability
- Atacameño People´s Council (CPA), represents 18 indigenous communities within the Salar basin
- Peine, closest indigenous community
- Municipality San Pedro of Atacama
- Municipality of Antofagasta

Leader in Community Engagement
- Jointly monitor the brine and water levels with indigenous communities
- Share a percentage of sales with indigenous communities

Voluntary Cooperation Agreement with Atacameño People´s Council signed in 2016, More comprehensive than an indigenous consultation

- Agreement based on standards from the:
 - United Nations Declaration on the Rights of Indigenous Peoples
 - ILO Convention 169 on Indigenous and Tribal Peoples in Independent Countries.

- Mechanism for community to benefit from Company’s operation:
 - 3.5% of Chilean sales contributed annually to indigenous communities to increase access to water, electricity, and support other infrastructure projects and scholarships

- Dialogue process to foster communities’ development:
 - Monthly Permanent Working Roundtable with representatives of the CPA and ALB to administer agreement and financial support

- Promote environmental stewardship:
 - Cooperation in the promotion of the territory’s sustainability and the protection of the Salar’s ecosystems, particularly water resources
 - Community hired professional staff supported by Albemarle funding, providing expertise in environmental, legal, and communications

More than 35% employees at the Salar Plant are indigenous

Note: Top photo: Ana Ramos, CPA and Ellen Lenny-Pessagno, Albemarle, during presentation at the Sustainable Mining forum; Middle photo: From left to right, Iván Colque, Víctor Ibacache, Fabiola Ramos, Abel Cáceres, well monitoring team; Bottom photo: construction of the community headquarters in Catarpe
Fostering Community Engagement

Case Study: Talison, Western Australia

Foodbank Donations

Helping to fight hunger by sponsoring Foodbank and providing funding for a new delivery truck at the Bunbury depot to enable delivery of food to people and schools in the South West.

Education in the Community

Active and enthusiastic supporter of education through apprenticeships, traineeships, STEM scholarships, and support for local schools.

Greenbushes Community Garden

Established in the heart of Greenbushes, the Community Garden is run by a dedicated group of local volunteers and provides opportunities for community connection and skill development.

Priority Bittern and Waterbird Biodiversity Project

Partnered with Blackwood Basin Group. Created a wetland haven that rehabilitated the Schwenke’s Dam - now home to more than 35 bird species not previously active.

Source: https://www.talisonlithium.com/community
Promoting & Developing Our People at Our Workplace

<table>
<thead>
<tr>
<th>Safety Initiative</th>
<th>Commitment to pursuit of zero injury, spills, environmental issues, and process safety workplace incidents</th>
<th>Using life saving rules, such as lock out tag out, line break, and confined space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing Excellence</td>
<td>Driving best-in-class cost management and product quality with a focus on safety, standard work, and continuous improvement</td>
<td>Application of LEAN principles across our manufacturing operations</td>
</tr>
<tr>
<td>Recognition Program</td>
<td>A new global recognition program celebrating our manufacturing employees whose actions are making a positive impact on our business</td>
<td>GROW Program focused on personal mentoring to Guide, Ready, Outfit, and Widen our top talent to develop strengths and opportunities to unlock their potential career opportunities</td>
</tr>
</tbody>
</table>

Our People & Workplace Recognition Program

Lithium TOPS

Safety Initiative

- Commitment to pursuit of zero injury, spills, environmental issues, and process safety workplace incidents
- Using life saving rules, such as lock out tag out, line break, and confined space

Manufacturing Excellence

- Driving best-in-class cost management and product quality with a focus on safety, standard work, and continuous improvement
- Application of LEAN principles across our manufacturing operations

Recognition Program

- A new global recognition program celebrating our manufacturing employees whose actions are making a positive impact on our business

Training & Development

- GROW Program focused on personal mentoring to Guide, Ready, Outfit, and Widen our top talent to develop strengths and opportunities to unlock their potential career opportunities
Glossary

Lithium

- Li: Lithium
- LiCl: Lithium Chloride
- LiO2: Lithium Oxide
- Li2CO3: Lithium Carbonate
- TG: Technical Grade
- LCE: Lithium Carbonate Equivalent
- LTTBA: Lithium-tri-(tert-butoxy)-Aluminum Hydride
- LTEBH: Lithium Triethylborohydride
- LDA: Lithium Diisopropylamide
- LHMDS: Lithium Hexamethyldisilazide
- MEHO: Magnesium bis(2-ethylhexoxide) solution
- Grignard: Chemical Compound with a Formula R-Mg-X
- Zinc Compounds: Organozinc Reagents, Zinc Salts in Organic Solutions
- LiBOB: Lithium Bis-(oxalato)borate
- NMC: Lithium Nickel Cobalt Manganese Oxide
- NCA: Lithium Nickel Cobalt Aluminium Oxide
- LCO: Lithium Cobalt Oxide
- LMO: Lithium Manganese Oxide
- LFP: Lithium Iron Phosphate